
Integrated Bounds for Disintegrated Storage
Alon Berger
Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

Idit Keidar
Viterbi Department of Electrical Engineering, Technion, Haifa, Israel

Alexander Spiegelman
VMware Research, Israel

Abstract
We point out a somewhat surprising similarity between non-authenticated Byzantine storage,
coded storage, and certain emulations of shared registers from smaller ones. A common charac-
teristic in all of these is the inability of reads to safely return a value obtained in a single atomic
access to shared storage. We collectively refer to such systems as disintegrated storage, and show
integrated space lower bounds for asynchronous regular wait-free emulations in all of them. In a
nutshell, if readers are invisible, then the storage cost of such systems is inherently exponential
in the size of written values; otherwise, it is at least linear in the number of readers. Our bounds
are asymptotically tight to known algorithms, and thus justify their high costs.

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Computing methodologies → Distributed algorithms

Keywords and phrases storage, coding, lower bounds, space complexity, register emulations

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.11

1 Introduction

1.1 Space bounds for encoded, multi-register, and Byzantine storage
In many data sharing solutions, information needs to be read from multiple sources in order
for a single value to be reconstructed. One such example is coded storage where multiple
storage blocks need to be obtained in order to recover a single value that can be returned to
the application [5, 9, 10, 16–18, 22, 23]. Another example arises in shared memory systems,
where the granularity of atomic memory operations (such as load and store) is limited to a
single word (e.g., 64 bits) and one wishes to atomically read and write larger values [22]. A
third example is replicating data to overcome Byzantine faults (without authentication) or
data corruption, where a reader expects to obtain the same block from multiple servers in
order to validate it [1, 2, 19].

We refer to such systems collectively as disintegrated storage systems. We show that
such a need to read data in multiple storage accesses inherently entails high storage costs:
exponential in the data size if reads do not modify the storage, and otherwise linear in the
number of concurrent reads. This stands in contrast to systems that use non-Byzantine
replication, such as ABD [6], where, although meta-data (e.g., timestamps) is read from
several sources, the recovered value need only be read from a single source.

1.2 Our results
We consider a standard shared storage model (see Section 2). We refer to shared storage
locations (representing memory words, disks, servers, etc.) as objects. To strengthen our

© Alon Berger, Idit Keidar and Alexander Spiegelman;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 11; pp. 11:1–11:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Integrated Bounds for Disintegrated Storage

Invisible Reads Visible Reads

General Case τ + (τ − 1)
⌈

2D−1
L

⌉
τ + (τ − 1) · min

(⌈
2D−1

L

⌉
, R
)

Common Write
τ · 2D τ + (τ − 1) · min

(
2D − 1 , R

)
(e.g., coded storage)
Table 1 Lower bounds on shared storage space consumption, in units of blocks; D is the value

size, τ > 1 is the number of data blocks required in order to recover a value, L ≥ 1 is the maximal
number of blocks stored in a reader’s local data, and R the number of readers.

lower bounds, we assume that objects are responsive, i.e., do not fail; the results hold a
fortiori if objects can also be unresponsive [19]. Objects support general read-modify-write
operations by asynchronous processes. We study wait-free emulations of a shared regular
register [20].

Section 3 formally defines disintegrated storage. We use a notion of blocks, which are
parts of a value kept in storage – code blocks, segments of a longer-than-word value, or full
copies of a replicated value. A key assumption we make is that each block in the shared
storage pertains to a single write operation; a similar assumption was made in previous
studies [11,23]. The disintegration property then stipulates that a reader must obtain some
number τ > 1 of blocks pertaining to a value v before returning v. For example, τ blocks are
needed in τ -out-of-n coded storage, whereas τ = f +1 in f -tolerant Byzantine replication. To
strengthen our results, we allow the storage to hold unbounded meta-data (e.g., timestamps),
and count only the storage cost for blocks. Note that the need to obtain τ blocks implies
that meta-data cannot be used instead of actual data.

In Section 4 we give general lower bounds that apply to all types of disintegrated storage –
replicated, coded, and multi-register. We first consider invisible reads, which do not modify
the shared storage. This is a common paradigm in storage systems and often essential where
readers outnumber writers and have different permissions. In this case, even with one reader
and one writer, the storage size can be exponential; specifically, if value sizes are D (taken
from a domain of size 2D), then we show a lower bound of τ + (τ − 1)

⌈
2D−1
L

⌉
blocks, where

L is the number of blocks in a reader’s local storage. That is, either the local storage of the
reader or the shared storage is exponential.

Section 5 studies a more restrictive flavor of disintegrated storage, called τ -common write,
where a reader needs to obtain τ blocks produced by the same write(v) operation in order
to return v. In other words, if the reader obtains blocks that originate from two different
writes of the same value, then it cannot recognize that they pertain to the same value, as is
the case when blocks hold parts of a value or code blocks rather than replicas. In this case,
the shared storage cost is high independently of the local memory size. Specifically, we show
a bound of τ · 2D blocks with invisible readers. In systems that use symmetric coding (i.e.,
where all blocks are of the same size, namely at least D/τ bits), this implies a lower bound
of D · 2D bits. For a modest value size of 20 bytes, the bound amounts to 2.66 · 1037 TB,
and for 1KB values it is a whopping 1.02 · 102457 TB.

We further consider visible reads, which can modify the objects’ meta-data. Such readers
may indicate to the writers that a read is ongoing, and signal to them which blocks to retain.
Using such signals, the exponential bound no longer holds – there are emulations that store
a constant number of values per reader [2, 5, 13,22]. We show that such linear growth with
the number of readers is inherent. Our results are summarized in Table 1.

These bounds are tight as far as regularity and wait-freedom go: relaxing either require-

A. Berger, I. Keidar and A. Spiegelman 11:3

ment allows circumventing our results [1, 19]. As for storage cost, our lower bounds are
asymptotically tight to known algorithms, whether reads are visible [2,5,22] or not [7,16,18,21].

We note that the study of the inherent storage blowup in asynchronous coded systems has
only recently begun [11,23] and is still in its infancy. In this paper, we point out a somewhat
surprising similarity between coded storage and other types of shared memory/storage, and
show unified lower bounds for all of them. Section 6 concludes the paper and suggests
directions for future work.

1.3 Related work and applicability of our bounds
Several works have studied the space complexity of register emulations. Two recent works [11,
23] show a dependence between storage cost and the number of writers in crash-tolerant
storage, identifying a trade-off between the cost of replication (f + 1 copies for tolerating
f faults) and that of τ -out-of-n coding (linear in the number of writers). Though they do
not explicitly consider disintegrated storage, it is fairly straightforward to adapt the proof
from [23] to derive a lower bound of τW blocks with W writers. Here we consider the case
of single-writer algorithms, where this bound is trivial. Other papers [3, 15] show limitations
of multi-writer emulations when objects do not support atomic read-modify-write, whereas
we consider single-writer emulations that do use read-modify-write.

Chockler et al. [14] define the notion of amnesia for register emulations with an infinite
value domain, which intuitively captures the fact that an algorithm “forgets” all but a finite
number of values written to it. They show that a wait-free regular emulation tolerating
non-authenticated Byzantine faults with invisible readers cannot be amnesic, but do not
show concrete space lower bounds. In this paper we consider a family of disintegrated storage
algorithms, with visible and invisible readers, and show concrete bounds for the different
cases; if the size of the value domain is unbounded, then our invisible reader bounds imply
unbounded shared storage.

Disintegrated storage may also correspond to emulations of large registers from smaller
ones, where τ is the size of the big register divided by the size of the smaller one. Some
algorithms in this vein, e.g., [22], indeed have the disintegration property, as the writer writes
τ blocks to a buffer and a reader obtains τ blocks of the same write. These algorithms
are naturally subject to our bounds. Other algorithms, e.g., [12,13,20], do not satisfy our
assumption that each block in the shared storage pertains to a single write operation, and a
reader may return a value based on blocks written by different write operations. Thus, our
bounds do not apply to them. It is worth noting that these algorithms nevertheless either
have readers signal to the writers and use space linear in the number of readers, or have
invisible readers but use space exponential in the value size. Following an earlier publication
of our work in [8], Wei [25] showed that these costs – either linear in the number of visible
readers or exponential in the value size with invisible ones – are also inherent in emulations
of large registers from smaller ones that do share blocks among writes, albeit do not use
meta-data at all. Several questions remain open in this context: first, Wei’s bound is not
applicable to all types of storage we consider (in particular, Byzantine), and does not apply
to algorithms that use timestamps. Second, we are not familiar with any regular register
emulations where readers write-back data, and it is unclear whether our bound may be
circumvented this way.

Non-authenticated Byzantine storage algorithms that tolerate f faults need to read a
value f + 1 times in order to return it, and are thus τ -disintegrated for τ = f + 1. Note that
while our model assumes objects are responsive, it a fortiori applies to scenarios where objects
may be unresponsive. Some algorithms circumvent our bound either by providing only safe

DISC 2018

11:4 Integrated Bounds for Disintegrated Storage

semantics [19], or by forgoing wait-freedom [1]. Others use channels with unbounded capacity
to push data to clients [7, 21] or potentially unbounded storage with best-effort garbage
collection [18].

As for coded storage, whenever τ blocks are required to reconstruct a value, the algorithm
is τ -disintegrated. And indeed, previous solutions in our model require unbounded storage or
channels [9, 10, 16–18], or retain blocks for concurrent visible readers, consuming space linear
in the number of readers [5]. Our bounds justify these costs. Our assumption that each
block in the shared storage pertains to a single value is satisfied by almost all coded storage
algorithms we are aware of, the only exception is [24], which indeed circumvents our lower
bound but does not conform to regular register semantics. Other coded storage solutions,
e.g., [4], are not subject to our bound because they may recover a value from a single block.

2 Preliminaries

Shared storage model

We consider an asynchronous shared memory system consisting of two types of entities: A
finite set O = {o1, . . . , on} of objects comprising shared storage, and a set Π of processes.
Every entity in the system stores data: an object’s data is a single block from some domain
B, whereas a process’ data is an array of up to L blocks from B. We assume a bound L

on the number of blocks in the data array of each process. In addition, each entity stores
potentially infinite meta-data, meta. We denote an entity e’s data as e.data and likewise for
e.meta. A system’s storage cost is the number of objects in the shared storage, n.

Objects support atomic get and update actions by processes. We denote by ap an action
a performed by p and by o.ap an ap action at o. An o.updatep is an arbitrary read-modify-
write that possibly writes a block from B to o.data and modifies o.meta, p.meta, and p.data.
An o.getp may replace a block in p.data with o.data and may modify p.meta.

Algorithms, configurations, and runs

An algorithm defines the behaviors of processes as deterministic state machines, where state
transitions are associated with actions. A configuration is a mapping to states (data and
meta) from all system components, i.e., processes and objects. In an initial configuration all
components are in their initial states.

We study algorithms (executed by processes in Π) that emulate a high-level functionality,
exposing high-level operations, and performing low-level gets/updates on objects. We say
that high-level operations are invoked and return or respond. Note that, for simplicity, we
model gets and updates as instantaneous actions, because the objects are assumed to be
atomic, and we do not explicitly deal with object failures in this paper.

A run of algorithm A is a (finite or infinite) alternating sequence of configurations and
actions, beginning with some initial configuration, such that configuration transitions occur
according to A. Occurrences of actions in a run are called events. The possible events are
high-level operation invocations and responses and get/update occurrences. We use the
notion of time t during a run r to refer to the configuration reached after the tth event in r.
For a finite run r consisting of t events we define tr , t. Two operations are concurrent in a
run r if both are invoked in r before either returns. If a process p’s state transition from
state S is associated with a low-level action ap ∈ {getp, updatep}, we say that ap is enabled
in S. A run r′ is an extension of a (finite) run r if r is a prefix of r′; we denote by r′ \ r the
suffix of r′ that starts at tr. If a high-level operation op has been invoked by process p but

A. Berger, I. Keidar and A. Spiegelman 11:5

has not returned by time t in a run r, we say that op’s invocation is pending at t in r. We
assume that each process’ first action in a run is an invocation, and a process has at most
one pending invocation at any time.

For e ∈ Π∪O, we denote by e.data(r, t) the set of distinct blocks stored in e.data at time
t in a run r. Since for an object o, |o.data (r, t)| = 1, we sometimes refer to o.data (r, t) as
the block itself, by slight abuse of notation. We say that p obtains a block b at time t in a
run r, if b /∈ p.data (r, t) and b ∈ p.data (r, t+ 1).

Register emulations

We study algorithms that emulate a shared register [20], which stores a value v from some
domain V. We assume that |V| = 2D > 1, i.e., values can be represented using D > 0 bits.
For simplicity, we assume that each run begins with a dummy initialization operation that
writes the register’s initial value and does not overlap any operation. The register exposes
high-level readp and writep(v) operations of values v ∈ V to processes p ∈ Π. We consider
single-writer (SW) registers where the application at only one process (the writer) invokes
writes, and hence omit the subscript p from write(v). The remaining R , |Π| − 1 processes
are limited to performing reads, and are referred to as readers. For brevity, we refer to the
subsequence of a run where a specific invocation of a write(v)/ readp is pending simply as a
write(v)/ readp operation.

We assume that whenever a readp operation is invoked at time t in a run r, p.data (r, t)
is empty. We consider two scenarios: (1) invisible reads, where reads do not use updates,
and (2) visible reads, where reads may perform updates that update meta-data (only) in
the shared storage. Note that readers do not write actual data, which is usually the case
in regular register emulations, defined below. In a single-reader (SR) register R = 1, and if
R > 1 the register is multi-reader (MR). If the states of the writer and the objects at the
end of a finite run r are equal to their respective states at the end of a finite run r′, we say
that tr and tr′ are indistinguishable to the writer and objects, and denote: tr ≈w tr′ .

Our safety requirement is regularity [20]: a read rd must return the value of either the
last write w that returns before rd is invoked, or some write that is concurrent with rd.
For liveness, we require wait-freedom, namely that every operation invoked by a process p
returns within a finite number of p’s actions. In other words, if p is given infinitely many
opportunities to perform actions, it completes its operation regardless of the actions of other
processes.

3 Disintegrated storage

As noted above, existing wait-free algorithms of coded and/or Byzantine-fault-tolerant storage
with invisible readers may store all values ever written [7, 9, 11, 16–18,21]. This is because if
old values are erased, it is possible for a slow reader to never find sufficiently many blocks of
the same value so as to be able to return it. If readers are visible, then a value per reader is
retained. We want to prove that these costs are inherent. The challenge in proving such space
lower bounds is that the aforementioned algorithms use unbounded timestamps. How can
we show a space lower bound if we want to allow algorithms to use unbounded timestamps?
We address this by allowing meta-data to store timestamps, etc., and by not counting the
storage cost for meta-data. For example, the above algorithms store timestamps in meta-data
alongside data blocks and use them to figure out which data is safe to return, but still need
τ actual blocks/copies of a value in order to return it. Note that for the sake of the lower
bound, we do not restrict how meta-data is used; all we require is that the algorithm read τ

DISC 2018

11:6 Integrated Bounds for Disintegrated Storage

data blocks of the same value (or write), and we do not specify how the algorithm knows
that they pertain to the same value (or write). To formalize the property that the algorithm
returns τ blocks pertaining to the same value or write, we need to track, for each block in
the shared storage, which write produced it. To this end, we define labels. Labels are only
an analysis tool, and do not exist anywhere. In particular, they are not timestamps, not
meta-data, and not explicitly known to the algorithm. As an external observer, we may add
them as abstract state to the blocks, and track how they change.

Labels

We associate each block b in the shared or local storage with a set of labels, Labels(b), as we
now explain. For an algorithm A and v ∈ V, denote by WAv the set of write(v) operations
invoked in runs of A. For V ⊆ V, we denote WAV ,

⋃
v∈V WAv , and let WA , WV. For

clarity, we omit A when obvious from the context, and refer simply to Wv, WV , and W. We
assume that the kth update event occurring in a write operation w ∈W tags the block b it
stores (if any) with a unique label 〈w, k〉, so Labels(b) becomes {〈w, k〉}.

Whereas our assumption that each block in the shared storage pertains to a single write
rules out associating multiple labels with such a block, we do allow the reader’s meta-data to
recall multiple accesses encountering the same block. For example, when blocks are copies of
a replicated value, the reader can store one instance of the value in local memory and keep a
list of the objects where the value was encountered. To this end, a block in a reader’s data
may be tagged with multiple labels: when a reader p obtains a block b from an object o at
time t in a run r, the block b in p.data (r, t+ 1) is tagged with Labels(o.data (r, t)); if at time
t′ > t p.data still contains b and p performs an action on an object o′ s.t. o′.data (r, t′) = b

and the latter is tagged with label `, p adds ` to Labels(b) (regardless of whether b is added
to p.data once more). When all copies of a block are removed from p.data, all its labels
are “forgotten”. We emphasize that labels are not stored anywhere, and are only used for
analysis.

We track the labels of a value v ∈ V at time t in a run r using the sets S–labels (v, r, t),
of labels in the shared storage, L–labelsp (v, r, t), of labels in process p’s local storage, and
All–labelsp (v, r, t), a combination of both. Formally,

S–labels (v, r, t) ,
(⋃

o∈O Labels(o.data (r, t))
)
∩ (Wv × N).

L–labelsp (v, r, t) ,
(⋃

b∈p.data(r,t) Labels(b)
)
∩ (Wv × N).

All–labelsp (v, r, t) , L–labelsp (v, r, t) ∪ S–labels (v, r, t).
For a time t in a run r and p ∈ Π, we define valuesp (r, t) , {v ∈ V | L–labelsp (v, r, t) 6= ∅}.

Similarly, we track labels associated with a particular write w ∈W accessible by process
p ∈ Π at time t in a run r:

S–labels (w, r, t) ,
(⋃

o∈O Labels(o.data (r, t))
)
∩ ({w} × N).

L–labelsp (w, r, t) ,
(⋃

b∈p.data(r,t) Labels(b)
)
∩ ({w} × N).

All–labelsp (w, r, t) , L–labelsp (w, r, t) ∪ S–labels (w, r, t).
We define writesp (r, t) , {w ∈ W | L–labelsp (w, r, t) 6= ∅}. Note that for all v ∈ V and
w ∈ Wv, (1) S–labels (w, r, t) ⊆ S–labels (v, r, t), (2) L–labelsp (w, r, t) ⊆ L–labelsp (v, r, t),
and (3) All–labelsp (w, r, t) ⊆ All–labelsp (v, r, t).

Since readers do not write-back:

I Observation 1. If the tth event in a run r is of a reader p ∈ Π, then for all v ∈ V, w ∈W:
All–labelsp (v, r, t) ⊆ All–labelsp (v, r, t− 1) and All–labelsp (w, r, t) ⊆ All–labelsp (w, r, t− 1).

A. Berger, I. Keidar and A. Spiegelman 11:7

Disintegrated storage

Intuitively, in disintegrated storage register emulations, for a readp to return v, p must
encounter τ > 1 blocks corresponding to v that were produced by separate update events.
To formalize this, we use labels:

I Definition 2 (τ -disintegrated storage). If a return of v ∈ V by a readp invocation is enabled
at time t in a run r then |L–labelsp (v, r, t)| ≥ τ .

Thus, a reader can only return v if it recalls (in its local memory) obtaining blocks of v with
τ different labels.

A more restrictive case of τ -disintegrated storage occurs when readers cannot identify
whether two blocks pertain to a common value unless they are produced by a common write
that identifies them, e.g., with the same timestamp. This is the case when value parts or
code words are stored in objects rather than full replicas.

To capture this case, for a block b ∈
⋃
e∈O∪Π e.data, a value v ∈ V, and a write w ∈Wv,

if ∃k ∈ N s.t. 〈w, k〉 ∈ Labels(b), we say that w is an origin write of b and v is an origin value
of b. Common write τ -disintegrated storage is then defined:

I Definition 3 (common write τ -disintegrated storage). If a return of v ∈ V by a readp
invocation is enabled at time t in a run r then ∃w ∈Wv : |L–labelsp (w, r, t)| ≥ τ .

Note that we do not further require p.data to actually hold τ blocks with a common write,
because the weaker definition suffices for our lower bounds. For brevity, we henceforth refer
to a common write τ -disintegrated storage algorithm simply as τ -common write.

Permanence

Our lower bounds will all stem, in one way or another, from the observation that in wait-free
disintegrated storage, every run must reach a point after which some values (and in the case
of common write, also some writes) must permanently have a certain number of blocks in
the shared storage. This is captured by the following definition:

I Definition 4 (permanence). Consider a finite run r, k ∈ N, a set S ⊆ V, and a set of readers
Θ ⊂ Π. Let z ∈ V∪W be a value or a write operation. We say that z is 〈k, Θ, S〉-permanent
in r if in every finite extension r′ of r s.t. in r′ \ r readers in Θ do not take actions and
writes are limited to values from S, |S–labels (z, r′, tr′)| ≥ k.

Intuitively, this means that the shared storage continues to hold k blocks of z as long as
readers in Θ do not signal to the writer and only values from S are written. For brevity, when
the particular sets S and Θ are not important, we refer to the value shortly as k-permanent.
The observation below follows immediately from the definition of permanence:

I Observation 5. Let v ∈ V, w ∈Wv, k ∈ N, V2 ⊆ V1 ⊆ V, Θ1 ⊆ Θ2 ⊂ Π.
1. If w is 〈k, Θ1, V1〉-permanent in a finite run r then v is 〈k, Θ1, V1〉-permanent in r.
2. If v is 〈k, Θ1, V1〉-permanent in a finite run r then v is 〈k, Θ2, V2〉-permanent in all

finite extensions r′ of r where in r′ \ r writes are limited to values from V1 and readers
in Θ1 do not take actions.

Since each object holds a single block associated with a single label:

I Observation 6. For time t in a run r, the number of objects is: n ≥
∣∣⋃

v∈V S–labels (v, r, t)
∣∣.

Thus, if there are m different k-permanent values in a run, then n ≥ mk. We observe that
with invisible readers, the set Θ is immaterial:

DISC 2018

11:8 Integrated Bounds for Disintegrated Storage

I Observation 7. Consider k ∈ N, V ⊆ V, and a finite run r with an invisible reader p ∈ Π.
If z ∈ V ∪W is 〈k, {p}, V 〉-permanent in r then z is 〈k, ∅, V 〉-permanent in r.

The specific lower bounds for the four scenarios we consider differ in the number of
permanent values/writes and the number of blocks per value/write (k = τ − 1 or k = τ)
we can force the shared storage to retain forever in each case. Interestingly, our notion of
permanence resembles the idea that an algorithm is not amnesic introduced in [14] (see
Section 1.3), but is more fine-grained in specifying the number of permanent blocks and
restricting executions under which they are retained.

4 Lower bounds for disintegrated storage

In this section we provide lower bounds on the number of objects required for τ -disintegrated
storage regular wait-free register emulations. Section 4.1 proves two general properties
of regular wait-free τ -disintegrated storage algorithms. We show in Section 4.2 that with
invisible reads, unless the readers’ local storage size is exponential in D, the storage cost of
such emulations is at least exponential in D. Finally, Section 4.3 shows that if reads are
visible, then the storage cost increases linearly with the number of readers.

4.1 General properties
We first show that because readers must make progress even if the writer stops taking steps,
at least 2τ − 1 blocks are required regardless of the number of readers.

I Claim 8. Consider v1, v2 ∈ V and a run r of a wait-free regular τ -disintegrated storage
algorithm with two consecutive responded writes w1 ∈Wv1 followed by w2 ∈Wv2 . Let p ∈ Π
be a reader s.t. no readp is pending in r. Then there is a time t between the returns of w1
and w2 when |S–labels (v1, r, t)| ≥ τ and |S–labels (v2, r, t)| ≥ τ − 1.

Proof. We first argue that at the time ti, i ∈ {1, 2} when wi returns, |S–labels (vi, r, ti)| ≥ τ .
Assume the contrary. We build a run r′ identical to r up to ti. In r′, only process p performs
actions after time ti. Next, invoke a readp operation rd. By regularity and wait-freedom,
rd must return vi. Before performing actions on objects, p.data (r′, ti) is empty, thus, from
τ -disintegrated storage, p must encounter at least τ blocks with an origin value of vi in
order to return it. Since no process other than p takes actions, |S–labels (vi, r′, t′)| < τ for
all t′ ≥ ti onward, so rd cannot find these blocks and does not return vi, a contradiction. It
follows that in r′ at ti, and hence also in r at ti, |S–labels (vi, r, ti)| ≥ τ .

Next, if at t1, |S–labels (v2, r, t1)| ≥ τ − 1 then we are done. Otherwise, observe that
objects are accessed one-at-a-time. Therefore, and since |S–labels (v2, r, t1)| < τ − 1, there
exists a time t between t1 and t2 when |S–labels (v2, r, t)| = τ − 1.

Finally, assume that |S–labels (v1, r, t)| < τ . Build a run r′′ identical to r up to t, where
again only p takes actions after t. As above, it follows by regularity, τ -disintegrated storage,
and p.data (r′′, t) = ∅, that rd never returns, in violation of wait-freedom. It follows that
|S–labels (v1, r

′′, t)| = |S–labels (v1, r, t)| ≥ τ . J

The following lemma states that every non-empty set V can be split into two disjoint
subsets, where one contains a value that is (τ − 1)-permanent with respect to the other
subset. The idea is to show that in the absence of such a value, a reader’s accesses to the
shared storage may be scheduled in a way that prevents the reader from obtaining τ labels
of the same value. The logic of the proof is the following: we restrict writes to a set of
values V , and consider the set S of values with blocks in p.data ∩ V . If no value in S is

A. Berger, I. Keidar and A. Spiegelman 11:9

(τ − 1)-permanent, then we can bring the shared storage to a state where none of the values
in S have τ labels, preventing the reader from obtaining the τ labels required to return.
By regularity, readers cannot return other values. The formal proof is slightly more subtle,
because it needs to consider L–labelsp as well as labels in the shared storage. It shows that
the total number of labels of values in S (in both the shared and local storage) remains below
τ whenever p takes a step.

I Lemma 9. Consider a non-empty set of values V ⊆ V, a set of readers Θ ⊂ Π, a reader
p ∈ Π \Θ, and a finite run r of a wait-free regular τ -disintegrated storage algorithm. Then
there is a subset S ⊆ V of size 1 ≤ |S| ≤ L and an extension r′ of r where some value v ∈ S
is 〈τ − 1, Θ ∪ {p}, V \ S〉-permanent and s.t. in r′ \ r writes are limited to values from V

and readers in Θ do not take steps.

Proof. Assume by contradiction that the lemma does not hold. We construct an extension
r′ of r where a readp operation includes infinitely many actions of p yet does not return. To
this end, we show that the following property holds at specific times in r′ \ r:

ϕ (r̂, t) , ∀v ∈ valuesp (r̂, t) ∩ V : |All–labelsp (v, r̂, t)| < τ.

First, extend r to r0 by returning any pending readp and write, invoking and returning
a write(v0) for some v0 ∈ V (the operations eventually return, by wait-freedom), and finally
invoking a readp operation rd without allowing it to take actions. We now prove by induction
that for all k ∈ N, there exists an extension r′ of r0 where (1) ϕ (r′, tr′) holds and in r′ \ r:
(2) writes are restricted to values from V , (3) p performs k actions on objects following rd’s
invocation, and (4) rd’s return is not enabled, and (5) processes in Θ do not take steps.

Base: for k = 0, consider r′ = r0. (3,5) hold trivially. (2) holds since the only write in
r′ \ r is of v0 ∈ V . Since p performs no actions following the invocation of rd, p.data (r′, tr′)
is empty. Therefore, (1) ϕ (r′, tr′) is vacuously true, and L–labelsp (v, r, t) is empty for all
v ∈ V, thus (4) rd’s return is not enabled by τ -disintegrated storage.

Step: assume inductively such an extension r1 of r0 with k ≥ 0 actions performed by p
following rd’s invocation. Since rd cannot return, by wait-freedom, an action ap is enabled
on some object. We construct an extension r2 of r1 by letting ap occur at time tr1 . We
consider two cases:

1. p does not obtain a block with an origin value in V \ valuesp (r1, tr1) at ap, thus
valuesp (r2, tr2) ∩ V ⊆ valuesp (r1, tr1) ∩ V . Then, by Observation 1 and the inductive
hypothesis, (1) ϕ (r2, tr2) holds and thus, by τ -disintegrated storage, rd cannot return any
value v ∈ valuesp (r2, tr2) ∩ V at tr2 . (4) It cannot return any other value in valuesp (r2, tr2)
by regularity, and r2 satisfies the induction hypothesis for k + 1, as (2,3,5) trivially hold.

2. p obtains a block with origin value u ∈ V \ valuesp (r1, tr1) at time tr1 . Then
|L–labelsp (u, r2, tr2)| = 1. By Observation 1 and the inductive hypothesis, for all v ∈
valuesp (r2, tr2) \ {u}, |L–labelsp (v, r2, tr2)| < τ , and thus rd’s return is not enabled at time
tr2 by τ -disintegrated storage and regularity.

Let S = valuesp (r2, tr2)∩V , and note that |S| ≥ 1 (since u ∈ S) and that |S| ≤ |p.data| ≤
L. By the contradicting assumption, u is not 〈τ − 1, Θ ∪ {p}, V \ S〉-permanent in r2, thus
there exists an extension r3 of r2 s.t. |S–labels (u, r3, tr3)| < τ − 1 and in r3 \ r2 writes are
limited to values from V \ S and no readers in Θ ∪ {p} take steps (3,5 hold). Since p takes
no steps in r3 \ r2, we have that L–labelsp (u, r3, tr3) = L–labelsp (u, r2, tr2), yielding:

|All–labelsp (u, r3, tr3)| ≤ |L–labelsp (u, r2, tr2)|+ |S–labels (u, r3, tr3)| < 1+(τ −1) = τ. (1)

All writes invoked after tr2 are from WV \S (2 holds), and therefore do not produce
new labels associated with values in S. Since no values in S are written after tr1 and

DISC 2018

11:10 Integrated Bounds for Disintegrated Storage

readers’ actions do not affect the sets S–labels, by Observation 1, we have that ∀v ∈ S,
All–labelsp (v, r3, tr3) ⊆ All–labelsp (v, r1, tr1), and since ϕ (r1, tr1) holds (inductively) and
S \ {u} ⊆ valuesp (r1, tr1) ∩ V ,

∀v ∈ S \ {u} : |All–labelsp (v, r3, tr3)| ≤ |All–labelsp (v, r1, tr1)| < τ. (2)

From Equations 1 and 2, and since valuesp (r3, tr3) ∩ V = valuesp (r2, tr2) ∩ V = S, we get
ϕ (r3, tr3) (1). Since rd′s return was not enabled at time tr2 and it took no actions since, its
return is still not enabled (4), and we are done. J

4.2 Invisible reads
We now consider a setting of a single reader and single writer where reads are invisible.
To show the following theorem, we “blow up” the shared storage by repeatedly invoking
Lemma 9, each time adding one more (τ − 1)-permanent value, yielding the following bound:

I Theorem 10. The storage cost of a regular τ -disintegrated storage wait-free SRSW register
emulation where reads are invisible is at least τ + (τ − 1)

⌈
2D−1
L

⌉
blocks.

When readers are invisible, the set Θ is of no significance, so we consider ∅. Given a set
of values V , the value added by Lemma 9 is 〈τ − 1, ∅, V \ S〉-permanent for a smaller set
of values V \ S where |S| ≤ L. Therefore, we can invoke Lemma 9 m =

⌈
2D−1
L

⌉
− 1 times

before running out of values, showing the following:

I Lemma 11. Let p ∈ Π be an invisible reader. There exist finite runs r0, ..., rm and sets of
values V0 ⊃ V1 ⊃ ... ⊃ Vm and U0 ⊂ U1 ⊂ ... ⊂ Um, such that for all 0 ≤ k ≤ m:
(1) |Vk| ≥ 2D − Lk, |Uk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ − 1, ∅, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V and U0 = ∅. Assume inductively
that the lemma holds for k < m. Since m < 2D−1

L , we get: |Vk| > 2D −L 2D−1
L = 1. Since Vk

is non-empty and |∅| < R, by Lemma 9 there exist an extension rk+1 of rk where writes in
rk+1 \ rk are limited to values from Vk, a set S ⊂ Vk, 1 ≤ |S| ≤ L, and a value v ∈ S that is
〈τ − 1, {p}, Vk \ S〉-permanent in rk+1.

Let Vk+1 = Vk \S and Uk+1 = Uk ∪{v}. Note that, because Vk ∩Uk = ∅ and v ∈ S ⊂ Vk,
we get that Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = |Uk| + 1 = k + 1. Since 1 ≤ |S| ≤ L we have
that Vk ⊃ Vk+1 and |Vk+1| ≥ |Vk| − |S| ≥ 2D − L(k + 1). By the inductive assumption and
Observation 5, all values in Uk are 〈τ − 1, ∅, Vk+1〉-permanent in rk+1. By Observation 7,
v is also 〈τ − 1, ∅, Vk+1〉-permanent in rk+1 and we are done. J

Our bound combines the 2τ − 1 blocks of Claim 8 with the (τ − 1)m from Lemma 11:

Proof (Theorem 10). Consider an invisible reader p ∈ Π and construct rm, Vm, and Um as
in Lemma 11. Note that Vm contains at least two distinct values that are not in Um, since
Vm ∩Um = ∅ and |Vm| ≥ 2D −Lm > 2D −L 2D−1

L = 1. Extend rm to rm+1 by invoking and
returning write(v) and write(v′) for v, v′ ∈ Vm.

By Claim 8, there is a time t ≥ trm
in rm+1 when there are 2τ − 1 blocks in the shared

storage with origin values of v or v′. In addition, by Lemma 11, Um consists of m values
that are 〈τ − 1, ∅, Vm〉-permanent in rm, and since writes in rm+1 \ rm are of values from
Vm, the values in Um remain 〈τ − 1, ∅, Vm〉-permanent in rm+1. By Observation 6:

n ≥ 2τ − 1 + (τ − 1)m = τ + (τ − 1)(m+ 1) = τ + (τ − 1)
⌈

2D − 1
L

⌉
. J

A. Berger, I. Keidar and A. Spiegelman 11:11

4.3 Visible reads
We now consider systems where readers may write meta-data in the shared storage. We use a
similar technique as in Lemma 11, except that due to readers’ updates, the indistinguishability
argument can no longer be used. Instead, we invoke a new reader for each extension, and
therefore the number of runs might be limited by the number of readers, R:

I Theorem 12. The storage cost of a regular τ -disintegrated storage wait-free MRSW register
emulation with R readers is at least τ + (τ − 1) ·min

(⌈
2D−1
L

⌉
, R
)
blocks.

To achieve this bound, we use Lemma 9 again to construct N = min
(⌈

2D−1
L

⌉
, R
)
− 1

extensions of the empty run (note that it does not assume invisible reads).

I Lemma 13. There exist finite runs r0, ..., rN , sets of values V0 ⊃ V1 ⊃ ... ⊃ VN and
U0 ⊂ U1 ⊂ ... ⊂ UN , and sets of readers Θ0 ⊂ Θ1 ⊂ ... ⊂ ΘN , such that for all 0 ≤ k ≤ N :
(1) |Vk| ≥ 2D − Lk, |Uk| = |Θk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ − 1, Θk, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V, Θ0 = U0 = ∅. Assume inductively
such rk, Vk, Uk, and Θk for k < N , and construct rk+1 as follows: since R− |Θk| > 0, there
is a reader p ∈ Π\Θk. Since N < 2D−1

L , we get |Vk| > 2D−LN > 1. Therefore, by Lemma 9,
there exist an extension rk+1 of rk where in rk+1 \ rk writes are limited to values from Vk
and readers in Θk do not take steps, a set S ⊆ Vk, 1 ≤ |S| ≤ L, and a value v ∈ S that is
〈τ − 1, Θk ∪ {p}, Vk \ S〉-permanent in rk+1.

Let Vk+1 = Vk \S and Uk+1 = Uk ∪{v}. Note that, because Vk ∩Uk = ∅ and v ∈ S ⊂ Vk,
it follows that Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = k + 1. Furthermore, since 1 ≤ |S| ≤ L, we get:
Vk ⊃ Vk+1 and |Vk+1| ≥ |Vk| − |S| ≥ 2D − L(k + 1). Finally, let Θk+1 = Θk ∪ {p}. By the
inductive assumption and Observation 5, all values in Uk are 〈τ − 1, Θk+1, Vk+1〉-permanent
in rk+1, and so all of Uk+1 is 〈τ − 1, Θk+1, Vk+1〉-permanent in rk+1, as needed. J

From Lemma 13, in rN there is a set of N (τ − 1)-permanent values, inducing a cost of
(τ − 1)N . We use Claim 8 to increase the bound by 2τ − 1 additional blocks.

Proof (Theorem 12). Construct rN , VN , UN , and ΘN as in Lemma 13. Note that, since
R−N ≥ 1, there exists p ∈ ΠΘN . Since VN∩UN = ∅ and |VN | ≥ 2D−LN > 2D−L 2D−1

L = 1,
VN \UN contains at least two values. Extend rN to rN+1 by invoking and returning write(v)
and write(v′) for v, v′ ∈ VN \ UN .

By Claim 8, there is a time t ≥ trN
in rN+1 when there are 2τ − 1 blocks in the

shared storage with origin values of v or v′. UN consists of N additional values that are
〈τ − 1, ΘN , VN 〉-permanent in rN , and since in rN+1 \ rN writes are of values from VN and
no reader in ΘN takes steps, the values in UN remain 〈τ − 1, ΘN , VN 〉-permanent in rN+1.
By Observation 6, the storage cost is:

n ≥ 2τ − 1 + (τ − 1)N = τ + (τ − 1)(N + 1) = τ + (τ − 1) ·min
(⌈

2D − 1
L

⌉
, R

)
. J

5 Lower bounds for common write disintegrated storage

While the results of the previous section hold a fortiori for τ -common write algorithms, in this
case we are able to show stronger results, independent of the local storage size. Intuitively,
this is because readers can no longer reuse blocks they obtained from previous writes of

DISC 2018

11:12 Integrated Bounds for Disintegrated Storage

the same value, and so we can prolong the execution that blows up the shared storage by
rewriting values. Section 5.1 proves a general attribute of τ -common write algorithms. We
show in Section 5.2 that even with a single reader (and a single writer), if reads are invisible,
then the required storage cost is at least τ · 2D. In Section 5.3 we prove a bound for visible
reads.

5.1 General observation
In this section we define a property that is a special case of k-permanence, which additionally
requires that the set of labels associated with a write does not change.

I Definition 14 (Constancy). Consider a finite run r, k ∈ N, a set S ⊆ V, and a set of
readers Θ ⊂ Π. We say that a write w ∈ W is 〈k, Θ, S〉-constant in r if in every finite
extension r′ of r s.t. in r′ \ r readers in Θ do not take actions and writes are limited to
values from S, S–labels (w, r′, tr′) = S–labels (w, r, tr) and |S–labels (w, r′, tr′)| = k.

Similarly to Observation 7, it can be shown that:

I Observation 15. Consider V ⊆ V, k ∈ N, and a finite run r with an invisible reader
p ∈ Π. If w ∈W is 〈k, {p}, V 〉-constant in r then w is 〈k, ∅, V 〉-constant in r.

We next prove a stronger variant of Lemma 9 that allows us to add a permanent write
to the shared storage while some set C ⊆ W of writes are constant. Note that since the
number of writes of a value v is infinite and the number of constant writes in a finite run
is finite, for any non-empty V ⊆ V, WV \ C is non-empty.

I Lemma 16. Consider a non-empty set of values V ⊆ V, a set of readers Θ ⊂ Π, a reader
p ∈ Π \Θ, and a finite run r of a wait-free regular τ -common write algorithm. Let C be a
set of writes that are 〈τ − 1, Θ, V 〉-constant in r. Then there is an extension r′ of r where
some w ∈WV \ C returns and is 〈τ − 1, Θ ∪ {p}, V 〉-permanent, and s.t. in r′ \ r writes
are limited to WV and readers in Θ do not take actions.

Proof. Assume by contradiction that the lemma does not hold. We build an extension r′ of
r where a readp operation includes infinitely many actions of p yet does not return. To this
end, we show that the following property holds at specific times in r′ \ r:

ψ (r̂, t) , ∀w ∈ writesp (r̂, t) ∩WV : |All–labelsp (w, r̂, t)| < τ.

Note that, by definitions of τ -common write and of All–labels, whenever ψ (r′, t) holds, no
pending readp invocation can return a value v ∈ valuesp (r′, t) ∩ V .

First, extend r to r0 by returning any pending readp and write, invoking and returning
a write(v0) for some v0 ∈ V (the operations eventually return, by wait-freedom), and finally
invoking a readp operation rd without allowing it to take actions. We now prove by induction
that for all k ∈ N, there exists an extension r′ of r0 where (1) ψ (r′, tr′) holds, (2) no write
is pending at tr′ , and in r′ \ r: (3) writes are restricted to WV , (4) p performs k actions on
objects after invoking rd, (5) rd’s return is not enabled, and (6) processes in Θ do not take
steps.

Base: for k = 0, consider r′ = r0. (2,4,6) hold trivially. (3) holds since the only write in
r′ \ r is w0 ∈WV . Since p performs no actions following the invocation of rd, p.data (r′, tr′)
is empty. Therefore, (1) ψ (r′, tr′) is vacuously true, and L–labelsp (w, r′, tr′) is empty for all
w ∈WV , thus (5) rd’s return is not enabled by τ -common write.

Step: assume inductively such an extension r1 of r0 with k ≥ 0 actions by p following
rd’s invocation. Since rd cannot return, by wait-freedom, an action ap is enabled on some

A. Berger, I. Keidar and A. Spiegelman 11:13

object. We construct an extension r2 of r1 by letting ap occur at time tr1 . We then consider
three cases:

1. p does not obtain a block with an origin write in WV \ writesp (r1, tr1) at ap, thus
(writesp (r2, tr2) ∩WV) ⊆ (writesp (r1, tr1) ∩WV). Then, by Observation 1 and the inductive
hypothesis, (1) ψ (r2, tr2) holds and thus, by τ -common write, rd cannot return any value
v ∈ valuesp (r2, tr2) ∩ V at tr2 . (5) It cannot return any other value in valuesp (r2, tr2) by
regularity, and r2 satisfies the induction hypothesis for k + 1 as (2,3,4,6) trivially hold.

2. p obtains a block with origin write w′ ∈ C ∩WV \ writesp (r1, tr1) at ap. Then
|L–labelsp (w′, r1, tr1)| = 0. Since w′ is 〈τ − 1, Θ, V 〉-constant in r and in r1 \ r writes are
restricted to WV and processes in Θ do not take steps (inductively), then by definition of
constancy, |S–labels (w′, r1, tr1)| = τ − 1. By Observation 1, for all w ∈ writesp (r2, tr2) ∩
WV : All–labelsp (w, r2, tr2) ⊆ All–labelsp (w, r1, tr1). Therefore |All–labelsp (w′, r2, tr2)| ≤
|L–labelsp (w′, r1, tr1)|+|S–labels (w′, r1, tr1)| = τ−1. Together with the inductive hypothesis,
∀w ∈ writesp (r2, tr2) ∩WV \ {w′}, |All–labelsp (w, r2, tr2)| ≤ |All–labelsp (w, r1, tr1)| < τ ;
ψ (r2, tr2) follows, thus (5) follows, and (2,3,4,6) trivially hold.

3. p obtains a block with origin write w′ ∈ WV \ (writesp (r1, tr1) ∪ C) at ap. Then
|L–labelsp (w′, r2, tr2)| = 1 and the number of labels of other writes in writesp (r2, tr2) does
not increase following ap, thus rd’s return is not enabled at tr2 by τ -common write and
regularity.

By the contradicting assumption, w′ is not 〈τ − 1, Θ ∪ {p}, V 〉-permanent in r2, thus
there is an extension r3 of r2 s.t. |S–labels (w′, r3, tr3)| < τ − 1 and in r3 \ r2 writes are
limited to WV and no readers in Θ ∪ {p} take steps (3,4,6 hold).S We further extend r3 to
r4 by letting any pending write return (2).

Let S = writesp (r2, tr2) ∩WV . Since every w ∈ S returns before tr2 by the inductive
assumption, the writes in r4 \ r2 do not produce new labels associated with w. Since
readers do not affect the sets S–labels, it follows that ∀w ∈ S : S–labels (w, r4, tr4) ⊆
S–labels (w, r3, tr3) ⊆ S–labels (w, r2, tr2). Next, p takes no steps in r4 \ r2 (4 holds), thus
∀w ∈ S : L–labelsp (w′, r4, tr4) = L–labelsp (w′, r2, tr2). It follows that:

|All–labelsp (w′, r4, tr4)| ≤ |L–labelsp (w′, r2, tr2)|+|S–labels (w′, r3, tr3)| < 1+(τ−1) = τ. (3)

Moreover, by Observation 1 and the inductive assumption that ψ (r1, tr1) holds,

∀w ∈ S \ {w′} : |All–labelsp (w, r4, tr4)| ≤ |All–labelsp (w, r1, tr1)| < τ. (4)

From Equations 3 and 4, and since writesp (r4, tr4) ∩WV = writesp (r2, tr2) ∩WV = S,
we get (1) ψ (r4, tr4). Since rd′s return is not enabled at tr2 and (4) it took no actions since,
its return is not enabled anywhere in r4 \ r1 (5), and we are done. J

5.2 Invisible reads
We prove the following theorem by constructing a run with an exponential number of τ -
permanent values. The idea is to show that if there is a value in the domain for which there
is no τ -permanent write, then infinitely many writes remain (τ − 1)-constant, which is of
course impossible.

I Theorem 17. The storage cost of a regular τ -common write wait-free SRSW register
emulation where reads are invisible is at least τ · 2D blocks.

I Lemma 18. Consider a non-empty set of values V ⊆ V and a finite run r. Let C be a set
of writes that are 〈τ − 1, ∅, V 〉-constant in r. Then there exists an extension r′ of r where

DISC 2018

11:14 Integrated Bounds for Disintegrated Storage

writes in r′ \ r are limited to WV , and some w ∈WV \ C is either 〈τ − 1, ∅, V 〉-constant
or 〈τ, ∅, V 〉-permanent in r′.

Proof. Let p ∈ Π be a reader. By Lemma 16, there is an extension r′ of r where writes in
r′ \ r are limited to WV and some w ∈ WV \ C returns and is 〈τ − 1, {p}, V 〉-permanent.
By Observation 7, if w is 〈τ, {p}, V 〉-permanent in r′, then w is 〈τ, ∅, V 〉-permanent in
r′ and the lemma follows. Otherwise, there exists an extension r′′ of r′ where in r′′ \ r′
writes are limited to WV and p takes no steps, and |S–labels (w, r′′, tr′′)| < τ . Since w is
〈τ − 1, {p}, V 〉-permanent in r′, |S–labels (w, r′′, tr′′)| = τ − 1.

We show that w is 〈τ − 1, ∅, V 〉-constant in r′′. Consider an extension r′′′ of r′′ where
writes are limited to values from V and p takes no steps in r′′′ \ r′′. Since w has already
returned by time tr′′ , no new blocks with an origin write of w can be added to the shared
storage in r′′′ after tr′′ . It follows that S–labels (w, r′′′, tr′′′) ⊆ S–labels (w, r′′, tr′′). However,
since w is 〈τ − 1, {p}, V 〉-permanent in r′, and in r′′′ \ r′ writes are limited WV and p

takes no steps, then |S–labels (w, r′′′, tr′′′)| ≥ τ − 1 = |S–labels (w, r′′, tr′′)|, yielding that
S–labels (w, r′′′, tr′′′) = S–labels (w, r′′, tr′′). Thus, w is 〈τ − 1, {p}, V 〉-constant in r′′. The
lemma follows from Observation 15. J

I Claim 19. Consider a finite run r and a non-empty V ⊆ V. Then there is an extension r′
of r s.t. writes in r′ \ r are limited to WV , and some w ∈WV is 〈τ, ∅, V 〉-permanent in r′.

Proof. Consider an algorithm with storage cost n, and let m = dn/(τ − 1)e + 1. Assume
by contradiction that the claim does not hold. We get a contradiction by constructing
m+ 1 extensions of r; r0, ..., rm with sets of writes C0 ⊂ C1 ⊂ · · · ⊂ Cm ⊆Wv s.t. for all
0 ≤ k ≤ m:
(1) writes in rk \ r are limited to WV , and
(2) Ck is a set of k writes that are 〈τ − 1, ∅, V 〉-constant in rk.
Note that in rm,

⌈
n
τ−1

⌉
+1 writes are 〈τ − 1, ∅, V 〉-constant, implying a storage cost greater

than n by Observation 6, a contradiction.
The construction is by induction. The base case vacuously holds for r0 = r, C0 = ∅.

Assume inductively such rk and Ck for k < m. By Lemma 18 there exists an extension rk+1
of rk where some w ∈WV \Ck is either 〈τ, ∅, V 〉-permanent or 〈τ − 1, ∅, V 〉-constant, and
writes in rk+1 \ rk are limited to WV . Since all writes in Ck are 〈τ − 1, ∅, V 〉-constant
in rk they are also 〈τ − 1, ∅, V 〉-constant in rk+1. By the contracting assumption, w is
not 〈τ, ∅, V 〉-permanent in rk+1 thus it is 〈τ − 1, ∅, V 〉-constant in the run. Let Ck+1 =
Ck ∪ {w}, therefore |Ck+1| = k + 1 and all writes in Ck+1 are 〈τ − 1, ∅, V 〉-constant in
rk+1, as needed. J

We are now ready to prove our lower bound of τ · 2D blocks:

Proof (Theorem 17). We show that there exist 2D + 1 finite runs r0, r1, . . . , r2D and sets of
values V0 ⊃ V1 ⊃ ... ⊃ V2D and U0 ⊂ U1 ⊂ ... ⊂ U2D , such that for all 0 ≤ k ≤ 2D:
(1) |Vk| = 2D − k, |Uk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ, ∅, Vk〉-permanent in rk.

By induction. Base: r0 is the empty run, V0 = V, U0 = ∅. Assume inductively such rk,
Vk, and Uk for k < 2D, and construct rk+1 as follows: first, because |Vk| = 2D − k > 0, by
Claim 19 there is an extension rk+1 of rk where writes in rk+1 \ rk are limited to WVk

and
some w ∈WVk

is 〈τ, ∅, Vk〉-permanent.
Consider the value v ∈ Vk written by w. By Observation 5, v is 〈τ, ∅, Vk〉-permanent in

rk+1. Let Vk+1 = Vk \{v}, then |Vk+1| = |Vk|−1 = 2D−(k+1). Further let Uk+1 = Uk∪{v}.

A. Berger, I. Keidar and A. Spiegelman 11:15

Note that, because Vk ∩ Uk = ∅, we get v /∈ Uk and hence Vk+1 ∩ Uk+1 = ∅ and |Uk+1| =
|Uk|+ 1 = k + 1. Since Vk ⊃ Vk+1, then v is 〈τ, ∅, Vk+1〉-permanent. Additionally, writes
in rk+1 \ rk are from WVk

, thus by the inductive assumption and Observation 5, values in Uk
are 〈τ, ∅, Vk+1〉-permanent in rk+1, and so all of Uk+1 are 〈τ, ∅, Vk+1〉-permanent in rk+1.

Finally, U2D holds 2D values that are 〈τ, ∅, ∅〉-permanent in r2D . By Observation 6:

n ≥ τ · 2D. J

5.3 Visible reads
To prove a lower bound on the cost of systems with visible reads, we create a similar
construction, except that the number of extensions might be limited by the number of
readers, R. Instead, the bound depends on min

(
2D − 1 , R

)
:

I Theorem 20. The storage cost of a regular τ -common write wait-free MRSW register
emulation is at least τ + (τ − 1) ·min

(
2D − 1 , R

)
blocks.

Let N = min
(
2D − 1 , R

)
− 1. We build a run with N (τ − 1)-permanent values:

I Lemma 21. There exist finite runs r0, r1, . . . , rN , sets of values V0 ⊃ V1 ⊃ ... ⊃ VN and
U0 ⊂ U1 ⊂ ... ⊂ UN , and sets of readers Θ0 ⊂ Θ1 ⊂ ... ⊂ ΘN , s.t. for all 0 ≤ k ≤ N :
(1) |Vk| = 2D − k, |Uk| = |Θk| = k, Vk ∩ Uk = ∅, and
(2) all elements of Uk are 〈τ − 1, Θk, Vk〉-permanent in rk.

Proof. By induction. Base: r0 is the empty run, V0 = V, Θ0 = U0 = ∅. Assume inductively
such rk, Vk, Uk, and Θk for k < N , and construct rk+1 as follows: since R− |Θk| > 0, there
is a reader p ∈ Π \ Θk. Moreover, |Vk| > 2D − N > 0. Therefore, by Lemma 16, there is
an extension rk+1 of rk where writes in rk+1 \ rk are limited to WVk

, readers in Θk do not
take steps in rk+1 \ rk, and some w ∈WVk

returns and is 〈τ − 1, Θk ∪ {p}, Vk〉-permanent
in rk+1.

Let Θk+1 = Θk ∪ {p}, and consider the value v ∈ Vk written by w. By Observation 5, v
is 〈τ − 1, Θk+1, Vk〉-permanent. Let Vk+1 = Vk \ {v}, then |Vk+1| = 2D − (k + 1). Further
let Uk+1 = Uk ∪ {v}. Since Vk ∩ Uk = ∅, we get that Vk+1 ∩ Uk+1 = ∅ and |Uk+1| = k + 1.

Since Vk ⊃ Vk+1, v is 〈τ − 1, Θk+1, Vk+1〉-permanent. In addition, in rk+1 \ rk writes
are limited to WVk

and readers in Θk do not take steps, and since Θk ⊂ Θk+1, then by the
inductive assumption and Observation 5, all values in Uk are 〈τ − 1, Θk+1, Vk+1〉-permanent.
Therefore all elements of Uk+1 are 〈τ − 1, Θk+1, Vk+1〉-permanent in rk+1, as needed. J

From Lemma 21, in rN there is a set of N (τ − 1)-permanent values, inducing a cost of
(τ − 1)N . We use Claim 8 to increase the bound by 2τ − 1 additional blocks.

Proof (Theorem 20). Construct rN , VN , UN , and ΘN as in Lemma 21. Note that, since
R − N ≥ 1, there is a reader p ∈ Π \ ΘN . Since VN ∩ UN = ∅ and |VN | = 2D − N =
2D − (min

(
2D − 1 , R

)
− 1) ≥ 2, VN contains two values, and they are not in UN . Extend

rN to rN+1 by invoking and returning write(v) and write(v′) for v, v′ ∈ VN .
By Claim 8, there is a time t ≥ trN

in rN+1 when there are 2τ − 1 blocks in the
shared storage with origin values of v or v′. In addition, UN consists of N values that are
〈τ − 1, ΘN , VN 〉-permanent in rN , and since in rN+1 \ rN writes are of values from VN and
no reader in ΘN takes steps, the values in UN remain 〈τ − 1, ΘN , VN 〉-permanent in rN+1.
By Observation 6, the storage cost amounts to at least:

n ≥ 2τ − 1 + (τ − 1)N = τ + (τ − 1)(N + 1) = τ + (τ − 1) ·min
(
2D − 1 , R

)
. J

DISC 2018

11:16 Integrated Bounds for Disintegrated Storage

6 Discussion

We have shown lower bounds on the space complexity of regular wait-free τ -disintegrated
storage algorithms. Although our bounds are stated in terms of blocks, there are scenarios
where they entail concrete bounds in terms of bits. In replication, each block stores an
entire value, thus the block sizes are D bits. Other applications use symmetric coding
where all blocks are of equal size. Using a simple pigeonhole argument, it can be shown
that in τ -disintegrated storage emulations that use symmetric coding and that are not
(τ + 1)-disintegrated, the size of blocks is at least D/τ bits, yielding bounds of D · 2D and
D +D τ−1

τ ·min
(
2D − 1 , R

)
with invisible and visible readers, respectively.

Our lower bounds for the common write case explain, for the first time, why previous
coded storage algorithms have either had the readers write or consumed exponential (or even
unbounded) space. Similarly, they establish why previous emulations of large registers from
smaller ones have either had the readers write, had the writer share blocks among different
writes, or consumed exponential space.

Our work leaves several open questions. First, when replication is used as a means
to overcome Byzantine faults or data corruption, our results suggest that there might be
an interesting trade-off between the shared storage cost and the size of local memory at
the readers, and a possible advantage to systems that apply replication rather than error
correction codes: we have shown that, with invisible readers, the former require Ω(2D/L)
blocks, rather than the Ω(2D) blocks needed by the latter. Whether there are algorithms that
achieve this lower cost remains an open question. Second, it is unclear how the bounds would
be affected by removing our assumption that each block in the shared storage pertains to a
single write. Wei [25] has provided a partial answer to this questions by showing that similar
bounds hold without this assumption, but only in the case of emulating large registers from
smaller ones without meta-data at all. Similarly, it would be interesting to study whether
allowing readers to write data (and not only signals) impacts the storage cost. Finally, future
work may consider additional sub-classes of disintegrated storage, e.g., with unresponsive
objects, and show that additional costs are incurred in these cases.

Acknowledgments

We thank Yuval Cassuto, Gregory Chockler, Rati Gelashvili, and Yuanhao Wei for many
insightful discussions on space bounds for coded storage and emulations of large registers
from smaller ones.

References

1 Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos:
optimal resilience with byzantine shared memory. Distributed Computing, 18(5):387–408,
2006.

2 Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Wait-free regular storage
from byzantine components. Information Processing Letters, 101(2):60–65, 2007.

3 Marcos K. Aguilera, Burkhard Englert, and Eli Gafni. On using network attached disks
as shared memory. In Proceedings of the Twenty-second Annual Symposium on Principles
of Distributed Computing, PODC ’03, pages 315–324, New York, NY, USA, 2003. ACM.
URL: http://doi.acm.org/10.1145/872035.872082, doi:10.1145/872035.872082.

http://doi.acm.org/10.1145/872035.872082
http://dx.doi.org/10.1145/872035.872082

A. Berger, I. Keidar and A. Spiegelman 11:17

4 Marcos Kawazoe Aguilera, Ramaprabhu Janakiraman, and Lihao Xu. Using erasure codes
efficiently for storage in a distributed system. In 2005 International Conference on Depend-
able Systems and Networks (DSN’05), pages 336–345, June 2005.

5 Elli Androulaki, Christian Cachin, Dan Dobre, and Marko Vukolić. Erasure-coded byzan-
tine storage with separate metadata. In International Conference on Principles of Dis-
tributed Systems, pages 76–90. Springer, 2014.

6 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. Journal of the ACM (JACM), 42(1):124–142, January 1995. URL: http:
//doi.acm.org/10.1145/200836.200869, doi:10.1145/200836.200869.

7 Rida A Bazzi and Yin Ding. Non-skipping timestamps for byzantine data storage systems.
In International Symposium on Distributed Computing, pages 405–419. Springer, 2004.

8 Alon Berger, Idit Keidar, and Alexander Spiegelman. Integrated bounds for disintegrated
storage. arXiv preprint arXiv:1805.06265, 2018.

9 Christian Cachin and Stefano Tessaro. Optimal resilience for erasure-coded byzantine dis-
tributed storage. In Dependable Systems and Networks, 2006. DSN 2006. International
Conference on, pages 115–124. IEEE, 2006.

10 Viveck R. Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. A coded shared
atomic memory algorithm for message passing architectures. In Network Computing and
Applications (NCA), 2014 IEEE 13th International Symposium on, pages 253–260. IEEE,
2014.

11 Viveck R. Cadambe, Zhiying Wang, and Nancy Lynch. Information-theoretic lower
bounds on the storage cost of shared memory emulation. In Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, PODC ’16, pages 305–313, New
York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/2933057.2933118,
doi:10.1145/2933057.2933118.

12 Soma Chaudhuri, Martha J Kosa, and Jennifer L Welch. One-write algorithms for multi-
valued regular and atomic registers. Acta Informatica, 37(3):161–192, 2000.

13 Tian Ze Chen and Yuanhao Wei. Step Optimal Implementations of Large Single-Writer
Registers. In Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone, editors, 20th
International Conference on Principles of Distributed Systems (OPODIS 2016), volume 70
of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.
dagstuhl.de/opus/volltexte/2017/7101, doi:10.4230/LIPIcs.OPODIS.2016.32.

14 Gregory Chockler, Rachid Guerraoui, and Idit Keidar. Amnesic distributed storage. In
Distributed Computing, pages 139–151. Springer, 2007.

15 Gregory Chockler and Alexander Spiegelman. Space complexity of fault-tolerant register
emulations. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC ’17, pages 83–92, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/
10.1145/3087801.3087824, doi:10.1145/3087801.3087824.

16 Dan Dobre, Ghassan Karame, Wenting Li, Matthias Majuntke, Neeraj Suri, and Marko
Vukolić. Powerstore: proofs of writing for efficient and robust storage. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages 285–
298. ACM, 2013.

17 Partha Dutta, Rachid Guerraoui, and Ron R. Levy. Optimistic erasure-coded distributed
storage. In Proceedings of the 22nd International Symposium on Distributed Computing,
DISC ’08, pages 182–196, Berlin, Heidelberg, 2008. Springer-Verlag. URL: http://dx.doi.
org/10.1007/978-3-540-87779-0_13, doi:10.1007/978-3-540-87779-0_13.

18 Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. Efficient
byzantine-tolerant erasure-coded storage. In Dependable Systems and Networks, 2004 In-
ternational Conference on, pages 135–144. IEEE, 2004.

DISC 2018

http://doi.acm.org/10.1145/200836.200869
http://doi.acm.org/10.1145/200836.200869
http://dx.doi.org/10.1145/200836.200869
http://doi.acm.org/10.1145/2933057.2933118
http://dx.doi.org/10.1145/2933057.2933118
http://drops.dagstuhl.de/opus/volltexte/2017/7101
http://drops.dagstuhl.de/opus/volltexte/2017/7101
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.32
http://doi.acm.org/10.1145/3087801.3087824
http://doi.acm.org/10.1145/3087801.3087824
http://dx.doi.org/10.1145/3087801.3087824
http://dx.doi.org/10.1007/978-3-540-87779-0_13
http://dx.doi.org/10.1007/978-3-540-87779-0_13
http://dx.doi.org/10.1007/978-3-540-87779-0_13

11:18 Integrated Bounds for Disintegrated Storage

19 Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. Journal of the ACM (JACM), 45(3):451–500, 1998.

20 Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–101, 1986.
21 Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In

International Symposium on Distributed Computing, pages 311–325. Springer, 2002.
22 Gary L Peterson. Concurrent reading while writing. ACM Transactions on Programming

Languages and Systems (TOPLAS), 5(1):46–55, 1983.
23 Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar. Space bounds

for reliable storage: Fundamental limits of coding. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC ’16, pages 249–258, New
York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/2933057.2933104,
doi:10.1145/2933057.2933104.

24 Zhiying Wang and Viveck R. Cadambe. On multi-version coding for distributed storage.
In Communication, Control, and Computing (Allerton), 2014 52nd Annual Allerton Con-
ference on, pages 569–575. IEEE, 2014.

25 Yuanhao Wei. Space complexity of implementing large shared registers. arXiv preprint
arXiv:1808.00481, 2018.

http://doi.acm.org/10.1145/2933057.2933104
http://dx.doi.org/10.1145/2933057.2933104

	Introduction
	Space bounds for encoded, multi-register, and Byzantine storage
	Our results
	Related work and applicability of our bounds

	Preliminaries
	Disintegrated storage
	Lower bounds for disintegrated storage
	General properties
	Invisible reads
	Visible reads

	Lower bounds for common write disintegrated storage
	General observation
	Invisible reads
	Visible reads

	Discussion

